
Cooperative Multi-Agent Reinforcement Learning
in 2-Dimensional Bullet-Hell Games

Thomas Bird
Rensselaer Polytechnic Institute

tommycbird@gmail.com

Abstract

In this paper, I present a unique application of reinforce-
ment learning for training cooperative multi-agent charac-
ters in a fast-paced, 2D, bullet hell game, using the Unity
ML platform. My approach focuses on developing a single
shared brain that emphasizes both cooperation and coordina-
tion. The results showcase the effectiveness of this approach
in enabling the agents to defeat a boss character with vary-
ing behaviors and power-ups. This research contributes to the
growing field of cooperative multi-agent reinforcement learn-
ing and highlights its potential for developing advanced AI in
complex gaming environments.

Introduction
The field of reinforcement learning has seen significant ad-
vancements in recent years, with applications ranging from
robotics to natural language processing. In this paper, I fo-
cus on applying reinforcement learning to train cooperative
multi-agent characters within a 2D game inspired by the
MMORPG Realm of the Mad God. The primary goal of the
project is to create a team of agents capable of cooperating
effectively to defeat a challenging boss character.

There are a number of approaches one can take to a prob-
lem like this. The biggest decision for this was whether to
give the Agent’s individual minds or to give them a collec-
tive brain. This decision will be detailed later.

Technology
The software I used is mostly all in Unity. I used Unity
2D to create the environment and all of the scripting.
The reinforcement learning itself is power by Unity’s ML-
Agents library. Specifically, ml-agents v0.29.0, with Py-
Torch 1.13.1+cu1171. I also utilized TensorFlow for data vi-
sualization. For what it counts, I drew the pixel art in Piskel.

Motivation and Background
The motivation for this project stems from the increasing
interest in cooperative multi-agent systems, particularly in
gaming contexts. In many modern games, players must work
together as a team to overcome challenges, necessitating the

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1A version that allows you to train with GPU.

development of AI agents that can cooperate and adapt to
various situations. Furthermore, emulating a realistic game-
play experience, where players communicate and strate-
gize in real-time, serves as an additional motivation for the
project.

Realm of the Mad God (henceforth ROTMG) is a game I
had played growing up and is the inspiration for this project.
It is very fast-paced and involves dodging hundreds of pro-
jectiles continuously; hence the name of the genre, bullet
hell. This made it a very interesting choice to apply rein-
forcement learning to, as the agents would have to learn to
avoid a plethora of on-screen hazards.

ROTMG gameplay is typically centered around boss
fights. You either strive to defeat over-world bosses, or enter
dungeons where you’ll encounter a boss in the final cham-
ber. To replicate this, I programmed a boss fight of my own,
as well as three playable agent characters inspired by the
game.

The environment is an island, where the three agents are
confined to. The boss of this arena is a cyclops charac-
ter dubbed ”Polyphemus.” He boasts rudimentary AI, with
some set behaviors and attacks which will be detailed later.

These are the three agents:
• Wizard: A high attack, high range, but low health char-

acter. Effectively a glass cannon.
• Priest: A low attack, high range, and medium health

character. A well-balanced support.
• Warrior: A high attack, low range, and high health char-

acter. The tank of the group.
Each of the agents are able to move in all directions, shoot

in all directions, and activate their unique special moves
on a cool-down just like ROTMG. The wizard can fire a
high damage projectile, the warrior can buff nearby allies by
temporarily boosting their fire-rate, and the priest can heal
nearby allies.

With this mix of traits, the agents should hopefully coop-
erate to overcome Polyphemus.

Related Work
Previous work in cooperative multi-agent reinforcement
learning has explored various aspects, such as learning al-
gorithms, exploration strategies, and communication mech-
anisms. Examples include research on the StarCraft II envi-



ronment (Vinyals et al. 2019) and OpenAI’s work on Dota
2 (OpenAI 2019). While these projects demonstrate the po-
tential of reinforcement learning in creating advanced AI for
gaming, there remains room for further exploration in 2D
gaming contexts and distinct cooperation strategies. Here are
some examples:

• Cooperative Deep Reinforcement Learning in Param-
eterized Action Space (CDRLPAS) (Papoudakis et al.
2019): This work introduces a novel cooperative deep re-
inforcement learning framework in parameterized action
space for multi-agent problems. The proposed frame-
work could be adapted to the 2-dimensional bullet-hell
games context, like Realm of the Mad God.

• Learning to Communicate in Multi-Agent Reinforce-
ment Learning (Foerster et al. 2016): This paper presents
a method that allows reinforcement learning agents to
learn communication protocols while training, enabling
improved cooperation between agents. This approach
could be particularly useful in a fast-paced 2D game en-
vironment where agents must communicate effectively.

• Multi-Agent Reinforcement Learning for 2D Platform
Games (Moura and Campos 2019): This work explores
the application of multi-agent reinforcement learning to
2D platform games, particularly the Mario AI Bench-
mark. While this focuses on platformers, it demonstrates
the potential for using multi-agent reinforcement learn-
ing in 2D gaming contexts.

• Cooperative Heterogeneous Deep Reinforcement Learn-
ing (Yang, Zhang, and Wu 2019): This research proposes
a cooperative heterogeneous deep reinforcement learn-
ing framework, where agents with different roles collab-
orate to achieve a common goal. This framework can
be adapted to address the challenges in 2-dimensional
bullet-hell games like Realm of the Mad God, where
players with different classes must work together.

These examples highlight the potential of applying co-
operative multi-agent reinforcement learning techniques to
2-dimensional bullet-hell games. By building upon these
works, my project aims to demonstrate the effectiveness of
these approaches in the context of Realm of the Mad God.

Approach
To train the three agent characters (wizard, warrior, and
priest), I employ a single shared ”hive-mind” brain, which
enables them to cooperate more effectively than individual
brains. This design choice is inspired by the original game,
where players communicate and coordinate their strategies
in real-time. Using the Unity ML platform, I implement re-
inforcement learning to enable the agents to adapt and learn
strategies for defeating the boss character, Polyphemus.

The Boss AI
The boss was created with rudimentary AI, such that
he would have set and predictable behavior (just like in
ROTMG). This behavior can mostly be gleaned from the
provided pseudocode in 1.

In this algorithm, the basic AI is outlined.

Algorithm 1: Polyphemus Behavior
Update Runs every frame

1: if !phase2 AND at half hp then
2: firerate *= 1.5
3: end if
4: if !crying then
5: // SLASH BEHAVIOR
6: Agent a = closest agent
7: move position toward Agent a
8: if Agent a is in range then
9: fire slash attack with Agent a as target

10: end if
11: if HP reaches 75%, 50%, or 25% then
12: crying = true
13: rewardAgents(50) //for making him cry
14: end if
15: else
16: // CRYING BEHAVIOR
17: if not at the center then
18: move to the center
19: else
20: fire tears //alternates angle after each call
21: end if
22: if 15 seconds have elapsed since start of cry then
23: crying = false
24: end if
25: end if

Lines 4-14 are Polyphemus’ actions when in his default,
”Chase and Slash” behavior. He simply locates the nearest
agent, moves toward it, and (if he is in range) he will fire the
slash attack at their direction.

Lines 15-24 are Polyphemus’ actions when in his ”Cry-
ing” behavior. Three times throughout the boss fight, he will
walk to the middle of the arena and burst out tears radially.
They will also alternate slightly in angle so as to cover the
most area as possible.

Lines 1-3, lines 11-14, and lines 22-24 are simply checks
to see whether Polyphemus needs to change his behavior.

The code is as simple as it is so that the boss’s move set
and attacks can be varied, but ultimately still predictable for
the agents and players alike.

The Agents
Here I will outline the agents2 and the details for observing,
rewarding, and selecting actions.

Actions There are a total of 12 continuous actions, as well
as 6 discrete actions in the action space.

As each agent can travel or shoot in any direction, two
continuous actions compose each of their movement vectors
and two more compose their aiming direction vector. That
makes four continuous for each of the three agents, or 12
total.

2When I refer to ”the agents” I am referring to the single brain
that they share.



trainer type ppo batch size 128
buffer size 4096 learning rate 0.0002
beta 0.01 epsilon 0.2
lambd 0.95 num epoch 10
hidden units 512 num layers 2
gamma extrinsic 0.98 strength extrinsic 1.0
max steps 8000000 time horizon 64
summary freq 50000

Table 1: Hyperparameters used for training with PPO

As for discrete actions, each agent can either be shooting,
not be shooting, be using their special, or not be using their
special. With two discrete actions each, that makes 6 total.

Observations The observation space totals to 60. They are
as follows:
• 1: the current time
• 15: the agents [5 for each agent]
• 8: the boss
• 36 for the projectiles [4 for each projectile]

Rewards and Punishments Algorithms like the one
shown in Algorithm

Hyperparameters
The hyperparameters I used to accomplish good training re-
sults can be seen in 1. I only ever altered the gamma from
0.99 to 0.98, and I altered the max steps from 5 million to 8
million. From there I never again saw a need to change these
settings.

Results
The results of the training process are presented using sev-
eral TensorFlow graphs, which illustrate the agents’ progress
in learning to cooperate and defeat Polyphemus. The agents
demonstrate an ability to effectively utilize their unique abil-
ities and coordinate strategies to overcome the boss charac-
ter’s varying behaviors and power-ups.

Trial and Error
Throughout the course of training there were several hiccups
and mistakes made, and I have detailed them all in the fol-
lowing runs. Each run represents a different training model,
with different parameters. Below I detail each of their unique
characteristics and the changes that they required.

Runs 1-2 These runs are preliminary runs to test the base
incentive values. This resulted in a pretty simple strategy
wherein the wizard ran in circles to distract the boss while
the priest and warrior sat in the corner buffing one another.
Initially, to incentivize team-play, there was a reward given
for buffing or healing an ally3 so the two agents with support
abilities (the warrior and priest) farmed this reward while the
wizard dealt with the boss. This is obviously not intended
behavior, so I decided to slightly tweak some rewards and
remove this flat buff/heal reward to make it more dynamic.

3Regardless of whether anyone needed it.

Run 3 This run was particularly interesting as it led to a
strategy wherein the wizard and warrior agents immediately
walked into the boss to die, and the priest then kited the boss
in circles. It would occasionally take damage intentionally
and then heal itself. This is because the reward for healing
didn’t outweigh the punishment for taking damage, so it in-
centivized hurting oneself so as to heal it back and gain more
net reward. So I then made it so the priest got the reward
based on the percentage of health healed, and was punished
for taking damage equally plus a flat -0.1f punishment.

It was initially my intention to allow the agents to observe
every projectile of the bosses (as there can be around 100 on
screen during the cry phase). This led to terribly long learn-
ing times, so I decided to cut it. Now they can only observe
9 projectiles max (instead of 120), and these observations
get padded during the cry phase. This may be perplexing, as
one may ask how will they know where the tear projectiles
are during the cry phase? This is because those projectiles
will always fall in the same places and at the same angles. In
place of the 120 projectile observations, I gave them knowl-
edge of when the boss is crying, and at which point he begins
to cry. They can then infer where the tears are at that time
based on the agents’ positions relative to the center of the
arena.

Run 4 This run also had an interesting strategy. To incen-
tivize hitting the boss I had initially given out a flat reward
of 0.1f for every projectile that made contact as well as a
percentage of the damage that was done. This then implied
that there was potential for a larger total reward if you killed
the boss with more projectiles. For instance, say the boss
had 100 health, agent A dealt 5 damage per projectile, and
agent B dealt 20 damage per projectile. If agent A attacked
the boss alone, it would take 20 projectiles and give a flat
2.0f reward on top of the dynamic damage-based reward,
whereas agent B would only get 0.5f total as it would kill
the boss in 5 hits. In the scope of this demo, this led to a be-
havior wherein the priest would be the sole attacker, and the
wizard and warrior would simply not attack. I then removed
this flat reward.

Run 5 During this run the agents would make it to through
the first cry phase and occasionally the second. While it was
the furthest they had ever made it, their strategy was lack-
ing. It seemed that the wizard was the only one doing the
work, and the other two agents would simply die immedi-
ately, allowing the wizard to solo the boss. I then realized
I had a choice to make so that I could inspire the agent’s to
live longer and fight together. Thus, I chose to make the base
action punishment a function of the number of dead agents,
and increase the agent death punishment.

Run 6 Eureka! They’ve finally conquered the boss for the
first time. I would be celebrating, however, their tactics sim-
ply did not exhibit any cooperation. As the boss character
chases whoever’s nearest, his movement becomes less pre-
dictable when more agents are on screen. In other words,
it reduces the variability in the game when you take some
of the agent characters out of the picture. At the beginning
of each run for this model, the warrior would immediately



Figure 1: Cumulative Agent Reward
.

Figure 2: Agent Value Loss
.

be sacrificed. In an attempt to fix this behavior I made it so
episodes end on the death of a single agent.

Run 7-8 Not only did the previous change lead to no vic-
tories, it led to hardly any progress in the fight. Training took
24-hours, and while better results could have come up with
more training time, there was no indication that they were
progressing. After some reflection, I also realized that end-
ing the episode on a single agents death was against the na-
ture of the game, so I had to inspire them to win in another
way. To figure this out I asked myself, why is the warrior the
first to be sacrificed.

I then realized that it was due to the nature of accuracy.
In my model, I punished agents 0.1f for shooting a projec-
tile, but rewarded 0.1f back to them upon hitting the boss.
Therefore, you were punished for missing. This behavior
was never learned, and my method didn’t seem to work. Fur-
thermore, since the warrior buffs himself the most and has
the shortest range, he frequently has a boosted fire rate and
the least accuracy of the agents. This means he was racking
up tons and tons of inaccuracy punishments, so I removed
this system.

Run 9: The Final Run After over 150 hours of training,
and over 70 million steps of training across all models, I
have arrived at decent results. The boss is killed (in about 1
in every 5 runs), the priest heals hurt allies, and the warrior
buffs the wizard and priest. The tactics are not particularly
efficient, but they are safe, strategic, and effective.

TensorFlow Graphs
The results and progress of each of these runs can be seen
in the TensorFlow graphs. 1 displays the Cumulative Reward
over time for each environment, and 2 shows the Value Loss.

Some important or at least notable trends would be in run
6 and 9, as those two saw the most success. I’ve highlighted
them in the figure to make them stand out.

Run 6 (red) can be seen to have a very steady incline in
terms of reward, and a loss that stays low but slowly climbs
up toward the end. This is indicative that the predicted value
estimates are increasingly diverging from the actual value
estimates. In other words, the model is becoming less ac-
curate in predicting the expected cumulative rewards from
a given state-action pair over time. This is a curious trend
coming from one of the most successful runs, and I believe
it is due to a trade off in exploration and exploitation trade-
off. That is, as the model becomes better at exploiting its
current knowledge of the environment, it may explore less
frequently.

Run 9 (blue) has a very steady, seemingly flat reward
graph. This is no illusion. Despite the model’s success, it
actually didn’t have much change in its reward. The model
itself made it further and further into the fight, but ulti-
mately there was little variation in his mean reward. As for
its losses, they were heavily varied, but generally decreased
and tapered out toward the end. This suggests that the model
has reached a stable performance level, where it has learned
to consistently tackle the task at hand but may not be fully
optimized for achieving the highest possible rewards or ex-
ploring more efficient strategies. The model was successful,
but perhaps not at the same caliber that Run 6 was.

Discussion and Future Work
This project showcases the potential of cooperative multi-
agent reinforcement learning in developing advanced AI for
complex gaming environments, particularly in 2D contexts.
Future work may explore alternative cooperation strategies,
refinements to the ”hive-mind” brain approach, or exten-
sions to other gaming genres. Additionally, incorporating
more advanced communication mechanisms among agents
could further improve the AI’s ability to adapt and strategize
during gameplay.

My aim was to make an environment that best mim-
icked multiple players who are constantly communicating
and working toward a common goal. I am not completely
satisfied in this regard, and am eager to try new approaches
to this problem in the future. Bullet hell games are interest-
ing as their are many many variables to take into considera-
tion given the nature of the genre. It is difficult then to make
a perfect model which can account for all of the variables
and still manage to produce consistent, positive results.

Conclusion
In this paper, I explored the application of reinforcement
learning to train cooperative multi-agent characters within
a 2D game inspired by the MMORPG Realm of the Mad
God. The primary goal of the project was to create a team
of agents capable of cooperating effectively to defeat a chal-
lenging boss character. Using a single shared ”hive-mind”
brain, I trained the agents to coordinate their unique abilities
and strategies to overcome the boss character, Polyphemus.



Through multiple iterations of the training process, I
experienced various challenges and discovered interesting
strategies developed by the agents. These trials and errors
allowed me to refine the rewards, punishments, and hyper-
parameters to ultimately achieve a satisfactory level of co-
operation and performance.

Although the agents’ tactics were not always efficient,
they demonstrated safe, strategic, and effective cooperation.
The agents were able to defeat the boss in approximately 1
in every 5 runs, with the respective agents abiding by their
class-specific roles4. My project contributes to the growing
body of research in cooperative multi-agent reinforcement
learning, particularly within the context of 2D gaming envi-
ronments. It also highlights the potential of using reinforce-
ment learning to create advanced AI for gaming, opening av-
enues for further exploration and improvement in the field.

Acknowledgments
I would like to express my appreciation to Professor Mei
Si for her exceptional teaching and invaluable guidance
throughout the course of this project. Her expertise and ded-
ication have been inspiring.

I would also like to extend my gratitude to DECA Games,
the team behind Realm of the Mad God, for creating an en-
gaging and challenging environment that provided a rich
foundation for this research. Their continued support and
commitment to the gaming community have been instru-
mental in the success of this work. It would be interesting
to see DECA incorporate ML like this into the game some
day.

Furthermore, I would like to acknowledge the developers
of Unity’s ML-Agents toolkit for their significant contribu-
tions to the field of machine learning and game development.
Their open-source framework has made it possible for re-
searchers like myself to explore innovative applications of
artificial intelligence in gaming contexts.

Lastly, to USD student Daniel Daugbjerg, I want to ac-
knowledge the art he contributed to the project. He made all
of the boss and agent sprites.

References
Grandmaster level in StarCraft II using multi-agent re-
inforcement learning Vinyals, O.; Babuschkin, I.; Czar-
necki, W. M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi,
D. H.; Powell, R.; Ewalds, T.; Georgiev, P.; et al. 2019.
Grandmaster level in StarCraft II using multi-agent rein-
forcement learning. Nature, 575(7782): 350–354.

OpenAI Five OpenAI. 2019. OpenAI Five. https://openai.
com/projects/five/.

Cooperative Deep Reinforcement Learning in Param-
eterized Action Space Papoudakis, G.; Christianos, F.;
Schäfer, L.; and Albrecht, S. V. 2019. Cooperative Deep Re-
inforcement Learning in Parameterized Action Space. In Ad-
vances in Neural Information Processing Systems, 12335–
12345.

4That is, wizard for damage, priest for support, and warrior as
a mix.

Learning to communicate with deep multi-agent rein-
forcement learning Foerster, J.; Assael, I. A.; de Freitas,
N.; and Whiteson, S. 2016. Learning to communicate with
deep multi-agent reinforcement learning. In Advances in
Neural Information Processing Systems, 2137–2145.

Multi-Agent Reinforcement Learning for 2D Platform
Games Moura, T. S.; and Campos, L. C. 2019. Multi-
Agent Reinforcement Learning for 2D Platform Games. In
2019 IEEE Conference on Games (CoG), 1–8. IEEE.

Cooperative Heterogeneous Deep Reinforcement Learn-
ing Yang, Z.; Zhang, Y.; and Wu, Y. 2019. Cooperative
Heterogeneous Deep Reinforcement Learning. In Proceed-
ings of the 28th International Joint Conference on Artificial
Intelligence, 4708–4714. AAAI Press.


